Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1).
نویسندگان
چکیده
A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol.
منابع مشابه
Chromosome-encoded gene cluster for the metabolic pathway that converts aniline to TCA-cycle intermediates in Delftia tsuruhatensis AD9.
Delftia tsuruhatensis AD9 was isolated as an aniline-degrading bacterium from the soil surrounding a textile dyeing plant. The gene cluster involved in aniline degradation was cloned from the total DNA of strain AD9 into Escherichia coli JM109. After shotgun cloning, two recombinant E. coli strains showing aniline oxidation activity or catechol meta-cleavage activity were obtained by simple pla...
متن کاملGenetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae.
We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from l...
متن کاملA novel and complete gene cluster involved in the degradation of aniline by Delftia sp. AN3.
A recombinant strain, Escherichia coli JM109-AN1, was obtained by constructing of a genomic library of the total DNA of Delftia sp. AN3 in E. coli JM109 and screening for catechol 2,3-dioxygenase activity. This recombinant strain could grow on aniline as sole carbon, nitrogen and energy source. Enzymatic assays revealed that the exogenous genes including aniline dioxygenase (AD) and catechol 2,...
متن کاملDiscontinuities in the evolution of Pseudomonas putida cat genes.
The organization and transcriptional control of chromosomal cat genes (required for dissimilation of catechol by the beta-ketoadipate pathway) in the Pseudomonas putida biotype strain (ATCC 12633) are reported. Nucleotide sequence reveals that catR is separated by 135 bp from the divergently transcribed catBC,A; catC begins 21 nucleotides downstream from catB, and catA begins 41 nucleotides dow...
متن کاملLoss of Tdn catabolic genes by deletion from and curing of plasmid pTDN1 in Pseudomonas putida: rate and mode of loss are substrate and pH dependent.
The ability to degrade aromatic amines and m-toluate (Tdn+ phenotype), encoded by plasmid pTDN1, was lost from Pseudomonas putida hosts after subculture in benzoate, succinate, acetate and glucose minimal medium, the fastest rate of loss occurring where benzoate was the substrate. Tdn- cells had either lost the entire pTDN1 plasmid or suffered a recombinational deletion of a specific 26 kbp reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 179 2 شماره
صفحات -
تاریخ انتشار 1997